\(\int \frac {(f x)^{3/2} (a+b \text {arccosh}(c x))}{\sqrt {1-c^2 x^2}} \, dx\) [143]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 30, antiderivative size = 98 \[ \int \frac {(f x)^{3/2} (a+b \text {arccosh}(c x))}{\sqrt {1-c^2 x^2}} \, dx=\frac {2 (f x)^{5/2} (a+b \text {arccosh}(c x)) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {5}{4},\frac {9}{4},c^2 x^2\right )}{5 f}+\frac {4 b c (f x)^{7/2} \sqrt {-1+c x} \, _3F_2\left (1,\frac {7}{4},\frac {7}{4};\frac {9}{4},\frac {11}{4};c^2 x^2\right )}{35 f^2 \sqrt {1-c x}} \]

[Out]

2/5*(f*x)^(5/2)*(a+b*arccosh(c*x))*hypergeom([1/2, 5/4],[9/4],c^2*x^2)/f+4/35*b*c*(f*x)^(7/2)*hypergeom([1, 7/
4, 7/4],[9/4, 11/4],c^2*x^2)*(c*x-1)^(1/2)/f^2/(-c*x+1)^(1/2)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {5948} \[ \int \frac {(f x)^{3/2} (a+b \text {arccosh}(c x))}{\sqrt {1-c^2 x^2}} \, dx=\frac {4 b c \sqrt {c x-1} (f x)^{7/2} \, _3F_2\left (1,\frac {7}{4},\frac {7}{4};\frac {9}{4},\frac {11}{4};c^2 x^2\right )}{35 f^2 \sqrt {1-c x}}+\frac {2 (f x)^{5/2} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {5}{4},\frac {9}{4},c^2 x^2\right ) (a+b \text {arccosh}(c x))}{5 f} \]

[In]

Int[((f*x)^(3/2)*(a + b*ArcCosh[c*x]))/Sqrt[1 - c^2*x^2],x]

[Out]

(2*(f*x)^(5/2)*(a + b*ArcCosh[c*x])*Hypergeometric2F1[1/2, 5/4, 9/4, c^2*x^2])/(5*f) + (4*b*c*(f*x)^(7/2)*Sqrt
[-1 + c*x]*HypergeometricPFQ[{1, 7/4, 7/4}, {9/4, 11/4}, c^2*x^2])/(35*f^2*Sqrt[1 - c*x])

Rule 5948

Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x
)^(m + 1)/(f*(m + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcCosh[c*x])*Hypergeometric2F1[1/2, (1
+ m)/2, (3 + m)/2, c^2*x^2], x] + Simp[b*c*((f*x)^(m + 2)/(f^2*(m + 1)*(m + 2)))*Simp[Sqrt[1 + c*x]*(Sqrt[-1 +
 c*x]/Sqrt[d + e*x^2])]*HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, c^2*x^2], x] /; FreeQ[{
a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] &&  !IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \frac {2 (f x)^{5/2} (a+b \text {arccosh}(c x)) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {5}{4},\frac {9}{4},c^2 x^2\right )}{5 f}+\frac {4 b c (f x)^{7/2} \sqrt {-1+c x} \, _3F_2\left (1,\frac {7}{4},\frac {7}{4};\frac {9}{4},\frac {11}{4};c^2 x^2\right )}{35 f^2 \sqrt {1-c x}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.02 \[ \int \frac {(f x)^{3/2} (a+b \text {arccosh}(c x))}{\sqrt {1-c^2 x^2}} \, dx=\frac {2}{35} x (f x)^{3/2} \left (7 (a+b \text {arccosh}(c x)) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {5}{4},\frac {9}{4},c^2 x^2\right )+\frac {2 b c x \sqrt {-1+c x} \sqrt {1+c x} \, _3F_2\left (1,\frac {7}{4},\frac {7}{4};\frac {9}{4},\frac {11}{4};c^2 x^2\right )}{\sqrt {1-c^2 x^2}}\right ) \]

[In]

Integrate[((f*x)^(3/2)*(a + b*ArcCosh[c*x]))/Sqrt[1 - c^2*x^2],x]

[Out]

(2*x*(f*x)^(3/2)*(7*(a + b*ArcCosh[c*x])*Hypergeometric2F1[1/2, 5/4, 9/4, c^2*x^2] + (2*b*c*x*Sqrt[-1 + c*x]*S
qrt[1 + c*x]*HypergeometricPFQ[{1, 7/4, 7/4}, {9/4, 11/4}, c^2*x^2])/Sqrt[1 - c^2*x^2]))/35

Maple [F]

\[\int \frac {\left (f x \right )^{\frac {3}{2}} \left (a +b \,\operatorname {arccosh}\left (c x \right )\right )}{\sqrt {-c^{2} x^{2}+1}}d x\]

[In]

int((f*x)^(3/2)*(a+b*arccosh(c*x))/(-c^2*x^2+1)^(1/2),x)

[Out]

int((f*x)^(3/2)*(a+b*arccosh(c*x))/(-c^2*x^2+1)^(1/2),x)

Fricas [F]

\[ \int \frac {(f x)^{3/2} (a+b \text {arccosh}(c x))}{\sqrt {1-c^2 x^2}} \, dx=\int { \frac {\left (f x\right )^{\frac {3}{2}} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}}{\sqrt {-c^{2} x^{2} + 1}} \,d x } \]

[In]

integrate((f*x)^(3/2)*(a+b*arccosh(c*x))/(-c^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*x^2 + 1)*(b*f*x*arccosh(c*x) + a*f*x)*sqrt(f*x)/(c^2*x^2 - 1), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {(f x)^{3/2} (a+b \text {arccosh}(c x))}{\sqrt {1-c^2 x^2}} \, dx=\text {Timed out} \]

[In]

integrate((f*x)**(3/2)*(a+b*acosh(c*x))/(-c**2*x**2+1)**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(f x)^{3/2} (a+b \text {arccosh}(c x))}{\sqrt {1-c^2 x^2}} \, dx=\int { \frac {\left (f x\right )^{\frac {3}{2}} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}}{\sqrt {-c^{2} x^{2} + 1}} \,d x } \]

[In]

integrate((f*x)^(3/2)*(a+b*arccosh(c*x))/(-c^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((f*x)^(3/2)*(b*arccosh(c*x) + a)/sqrt(-c^2*x^2 + 1), x)

Giac [F]

\[ \int \frac {(f x)^{3/2} (a+b \text {arccosh}(c x))}{\sqrt {1-c^2 x^2}} \, dx=\int { \frac {\left (f x\right )^{\frac {3}{2}} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}}{\sqrt {-c^{2} x^{2} + 1}} \,d x } \]

[In]

integrate((f*x)^(3/2)*(a+b*arccosh(c*x))/(-c^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate((f*x)^(3/2)*(b*arccosh(c*x) + a)/sqrt(-c^2*x^2 + 1), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(f x)^{3/2} (a+b \text {arccosh}(c x))}{\sqrt {1-c^2 x^2}} \, dx=\int \frac {\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )\,{\left (f\,x\right )}^{3/2}}{\sqrt {1-c^2\,x^2}} \,d x \]

[In]

int(((a + b*acosh(c*x))*(f*x)^(3/2))/(1 - c^2*x^2)^(1/2),x)

[Out]

int(((a + b*acosh(c*x))*(f*x)^(3/2))/(1 - c^2*x^2)^(1/2), x)